Apa Itu Notasi ET Riil? | Notasi Teks yang Lebih Matematis dan Intuitif dari Notasi Musik Konvensional
Sesuai namanya, notasi ini berbasis rumus matematika equal temperament di mana oktaf dibagi sama rata berdasarkan logaritma basis 2. Riil sebagai judul untuk menegaskan bahwa notasi ini tidak terbatas pada bilangan bulat, tidak terbatas pada titik-titik ET diskret. Saya menegaskan demikian karena notasi ET—selain sen pun—sebenarnya telah banyak digunakan, tetapi secara diskret. Padahal, matematika pun mendukung penggunaan secara kontinu. Dan inilah inti mengapa notasi ET jauh lebih unggul daripada notasi teks konvensional.
Dasar
Dalam notasi nada ET, nada dinotasikan dengan angka di mana angka tersebut menjadi nilai pada rasio interval dari frekuensi nada dasar, dengan berarti jumlah pembagian ET yang digunakan. Dengan demikian, nada 5.2 dalam notasi 12-ET, dengan nada dasar di 260 Hz, bernilai . Sebaliknya, untuk mengetahui nilai notasi nada ET dari nilai frekuensi, maka digunakan rumus dengan adalah frekuensi nada dasar dan adalah frekuensi target atau frekuensi nada yang sedang dibahas. Dengan demikian, frekuensi 660 Hz dengan frekuensi nada dasar di 440 hz, bernilai dalam notasi nada 12-ET.
Kelebihan dari notasi ini adalah bahwa ia matematis sehingga fleksibel, akurat, objektif, dan intuitif secara bersamaan. Ia bisa menggunakan jumlah ET berapapun (5, 7, 15, 17, 24, 53, atau bahkan 1200! (yang merupakan notasi sen); praktisnya bilangan bulat positif), frekuensi nada dasar apapun, dan nilai bilangan apapun secara kontinu. Ia tidak didasarkan pada konvensi arbitrer atau konvensi yang didasarkan pada satu tradisi musik tertentu.
"Tar, bentar, katanya lebih intuitif kok ada rumus matematikanya?"
Tenang, sebenarnya bahkan gak perlu pemahaman matematika untuk memahami notasi ini. Berikut penjelasannya.
Penjelasan Intuitif Tanpa Matematika
Berikut penjelasan sederhana notasi ET yang anak-anak maupun awam pun bisa mudah memahaminya.
Sederhananya gini. Lihat piano (bisa pakai aplikasi Android). Nada dalam satu oktaf itu dibagi jadi 12 (semua kunci baik putih maupun hitam) sama rata (walaupun di tampilan di piano tidak rata, tetapi secara suara, rata). Nada dalam satu oktaf diberi nama/label berdasarkan jarak/langkah dari nada dasar. Nama/label berulang setiap oktaf, maksudnya: setelah 11, jadi 0 lagi.
Notasi Oktaf Nada ET
Nada di oktaf berbeda dinotasikan secara modular. Adapun oktaf, maka ada tiga cara ia dinotasikan dalam notasi nada ET. Saya rinci sebagai berikut.
-
Menggunakan huruf sebagai indeks dari A sebagai oktaf 0. Huruf dinotasikan di sebelah kanan bilangan supaya tidak tertukar dengan notasi alfabet konvensional.
-
Nada dinotasikan dengan bilangan dengan basis atau radiks yang disesuaikan, dan menggunakan indeks digit 1 ke atas sebagai indeks oktaf. Misalnya bilangan berbasis 12 untuk 12-ET: 32 berarti oktaf 3 nada 2. Ini hanya praktis untuk jumlah ET yang tidak terlalu besar.
-
Menggunakan bilangan bulat yang menunjukan langkah oktaf dari oktaf dasar. Bilangan tersebut dinotasikan menempel di sebelah kanan nada dalam kurung siku. Ini paling cocok untuk notasi berbasis referensi tuning nonstandar. Contoh (12-ET):
- nada 3 di satu oktaf atas dari oktaf dasar = 3[1];
- nada 5 di dua oktaf bawah dari oktaf dasar = 5[−2].
Absolutisasi
Notasi ini sejatinya relatif (sebagaimana musik). Namun, tentu merepotkan jika harus selalu menyebutkan referensi secara eksplisit. Maka dari itu, kita bisa menentukan bentuk absolut atau standar sebagai berikut:
-
sistem ET: 12-ET (sistem ET yang hampir semua orang familiar)
-
frekuensi nada 0 oktaf 4: = C4 tuning standar (sesuai dengan standar ISO)
Jika tidak ingin menggunakan bentuk absolut, sebutkanlah referensi yang digunakan, kecuali jika konteks sangatlah jelas.
Bentuk absolut juga bisa digunakan sebagai referensi untuk bentuk relatif. Misalnya, alih-alih menyatakan "nada 0 (oktaf dasar) = 349.228 Hz", kita bisa menyatakan "nada 0 = 5E", di mana bagian kiri adalah bentuk relatif, dan bagian kanan adalah bentuk absolut.
Konversi dengan Notasi Alfabet Barat
Notasi nada ET dan notasi alfabet Barat tidak bisa dikonversikan secara absolut, karena notasi Barat itu notasi absolut sedangkan notasi nada ET bisa digunakan baik secara relatif maupun absolut. Dengan demikian, kita hanya bisa mengonversikan secara absolut dengan notasi nada ET absolut/standar.
Berikut adalah tabelnya:
| Notasi Alfabet Barat | Notasi Nada ET Absolut |
|---|---|
| C | 0 |
| C# | 1 |
| D | 2 |
| D# | 3 |
| E | 4 |
| F | 5 |
| F# | 6 |
| G | 7 |
| G# | 8 |
| A | 9 |
| A# | 10 (atau a) |
| B | 11 (atau b) |
Visualisasi Titik-Titik ET dalam Geogebra
Titik-titik ET bisa divisualisasikan di atas skala frekuensi linear dengan fungsi Sequence di Geogebra, yaitu Sequence((f0 * 2^(n/ET), 0), n, 0, ET).
Varian Lain notasi: Relatif Antarnada
Yang saya bahas sebelumnya adalah notasi ET relatif terhadap nada dasar.
Selain relatif terhadap nada dasar, notasi ET juga bisa dinotasikan relatif antarnada.
Misalnya tangga nada mayor dalam notasi relatif terhadap nada dasar [0, 2, 4, 5, 7, 9, 11], dinotasikan dengan notasi relatif antarnada sebagai [2, 2, 1, 2, 2, 2, 1].
Berikutnya saya akan menyebut notasi relatif terhadap nada dasar dengan #1, dan notasi relatif antarnada dengan #2.
Mana yang lebih baik? Secara umum, #1 lebih intuitif, dan saya sendiri lebih banyak memakainya.
#2 lebih cocok jika ingin lebih objektif, walaupun kurang intuitif.
Dalam konteks tertentu, #2 lebih intuitif, seperti dalam menjelaskan rotasi tangga nada.
Misalnya, lebih intuitif menjelaskan rotasi pentatonik mayor ke pentatonik minor dengan [2, 2, 3, 2, 3] -> [3, 2, 2, 3, 2], daripada dengan [0, 2, 4, 7, 8] -> [0, 3, 5, 7, 10].
Dalam konteks tertentu, sebaiknya menggunakan keduanya, misalnya melakukan rotasi dengan #2, lalu diterjemahkan ke #1 supaya lebih mudah dimengerti.